В чем отличие стохастического градиентного спуска от обычного?
Стандартный градиентный спуск (Gradient Descent) и стохастический градиентный спуск (Stochastic Gradient Descent или SGD) - это два важных метода оптимизации в машинном обучении. Они отличаются в том, как обновляют параметры модели в процессе обучения.
• Градиентный спуск обновляет параметры модели на основе градиента, вычисленного на всем обучающем наборе. • Стохастический градиентный спуск (SGD) обновляет параметры, используя случайные образцы из обучающего набора, делая обучение быстрее, но более шумным.
В чем отличие стохастического градиентного спуска от обычного?
Стандартный градиентный спуск (Gradient Descent) и стохастический градиентный спуск (Stochastic Gradient Descent или SGD) - это два важных метода оптимизации в машинном обучении. Они отличаются в том, как обновляют параметры модели в процессе обучения.
• Градиентный спуск обновляет параметры модели на основе градиента, вычисленного на всем обучающем наборе. • Стохастический градиентный спуск (SGD) обновляет параметры, используя случайные образцы из обучающего набора, делая обучение быстрее, но более шумным.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.
The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.
Библиотека собеса по Data Science | вопросы с собеседований from jp